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Composite Safety Potential Field for Highway Driving Risk Assessment
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• A composite safety potential field (C-SPF) integrating both subjective and objective factors is designed to provide
a comprehensive assessment of driving risk on highways.

• C-SPF incorporates a subjective field providing human-like perception of proximity risks that can be calibrated
using abundant spacing data from publicly available trajectory datasets instead of relying on the rare accident
statistics data

• C-SPF features an objective field that captures imminent collision risks based on two-dimensional inter-vehicle
motions.

• C-SPF demonstrates superior interpretive capability to drivers’ safety maneuvers compared to existing risk
indicators, particularly in lateral maneuver cases.
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A B S T R A C T
In the era of rapid advancements in vehicle safety technologies, driving risk assessment has
become a focal point of attention. Technologies such as collision warning systems, advanced
driver assistance systems (ADAS), and autonomous driving require driving risks to be evaluated
proactively and in real time. To be effective, driving risk assessment metrics must not only
accurately identify potential collisions but also exhibit human-like reasoning to enable safe and
seamless interactions between vehicles. Existing safety potential field models assess driving risks
by considering both objective and subjective safety factors. However, their practical applicability
in real-world risk assessment tasks is limited. These models are often challenging to calibrate
due to the arbitrary nature of their structures, and calibration can be inefficient because of the
scarcity of accident statistics. Additionally, they struggle to generalize across both longitudinal
and lateral risks. To address these challenges, we propose a composite safety potential field
framework, namely C-SPF, involving a subjective field to capture drivers’ risk perception
about spatial proximity and an objective field to quantify the imminent collision probability, to
comprehensively evaluate driving risks. Different from existing models, the C-SPF is calibrated
using abundant two-dimensional spacing data from trajectory datasets, enabling it to effectively
capture drivers’ proximity risk perception and provide a more realistic explanation of driving
behaviors. Analysis of a naturalistic driving dataset demonstrates that the C-SPF can capture
both longitudinal and lateral risks that trigger drivers’ safety maneuvers. Further case studies
highlight the C-SPF’s ability to explain lateral driver behaviors, such as abandoning lane changes
or adjusting lateral position relative to adjacent vehicles, which are capabilities that existing
models fail to achieve.

1. Introduction
Driving risk assessment is a critical aspect of traffic safety research. It involves identifying factors that could

compromise a vehicle’s safety state and quantifying its proximity to potentially hazardous situations, such as collisions.
In an era of rapidly emerging vehicle safety technologies, proactively assessing driving risks and delivering real-time
inputs to safety algorithms are critical for the effectiveness of advanced safety systems, including collision warning
systems, advanced driver assistance systems (ADAS), and autonomous driving solutions.

Numerous approaches have been developed for driving risk assessment. One category focuses on objective data,
such as vehicle trajectories and underlying kinematics. Among the most widely used methods in this category are
conflict-based surrogate safety measures like time-to-collision (TTC) (Minderhoud and Bovy (2001)) and modified
time-to-collision (Ozbay, Yang, Bartin and Mudigonda (2008)), deceleration to avoid crash (DRAC) (Fu and Sayed
(2021)), post-encroachment time (PET) (Cooper (1984)) and time-to-lane-crossing (TLC) (Mammar, Glaser, Netto
and Blosseville (2004)). These measures use straightforward physical formulas to evaluate a vehicle’s proximity to
potential safety-critical events, such as collisions or lane departures. Another category focuses on subjective factors
related to driver behavior and cognition in response to the risk. These factors include steering angles, braking intensity,
and physiological states such as eye movements and blood volume pulse (Petit, Charron and Mars (2021)). These
subjective factors assess driving risks by quantifying the pressure experienced by drivers or the intensity of their
reactions to perceived hazards.

Both objective and subjective factors play a crucial role in driving risk assessment, particularly in emerging vehicle
safety applications. For instance, while real-time risk assessment models must assist autonomous vehicles and ADAS
in achieving the goal of near-zero accidents, they should also understand passenger risk perception to enhance their
sense of security and comfort. Additionally, these models should account for the risk perception of other road users to
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prevent behaviors that might make human drivers feel unsafe, thereby contributing to the overall safety conditions of
traffic.

However, both objective and subjective approaches for driving safety assessment have their limitations. First,
collision risk models based on surrogate safety measures are often tailored to specific scenarios and lack generalizability
across different use cases. Moreover, their effectiveness in assessing collision risks can vary across different facilities
due to the heterogeneity of crash characteristics among them. On the other hand, subjective metrics, such as braking
and steering behavior, are challenging to interpret without well-defined thresholds or appropriate aggregation methods
(Wang, Xie, Huang and Liu (2021)). Additionally, data on drivers’ physiological states require specialized instruments
for collection and can vary significantly between individuals (Bao, Carballo, Miyajima, Takeuchi and Takeda (2020)).

Recent studies have proposed the safety potential field method for driving risk assessment. This approach offers the
advantage of providing a spatially continuous representation of safety risks across two-dimensional space, integrating
both subjective and objective aspects of driving risks. It quantifies the spatial distribution of driving risk on the road
using principles inspired by physical foundations, such as how a particle in an electric field experiences potential energy
or a repulsive force relative to another charged object (Wang, Wu and Li (2015)).

However, existing safety potential field methods still face challenges and limitations that undermine their ability to
accurately quantify highway driving safety risks:

• First, existing safety potential field models utilize arbitrary physical functions that might inadequately represent
the spatial distribution of risk from a driver’s perspective. As a result, these models lack a human-like
understanding of risk and are limited in their ability to interpret driver behaviors. Even with extensive calibration,
they struggle to realistically capture driver behavior, particularly in lateral maneuver scenarios.

• Second, the scarcity of collision and near-miss data raises concerns about the effectiveness of safety potential
field calibration. Variations in crash patterns and characteristics across different times and regions further
undermine the generalizability of models calibrated using this type of event data. Moreover, the even rarer
occurrence of lateral risk-related events presents further significant challenges for calibrating the lateral
components of these models, raising doubts about their ability to accurately model lateral risks.

To address the issues identified above, we propose a novel composite safety potential field (C-SPF) framework for
comprehensive highway driving risk assessment. C-SPF uses a composite structure, overlaying two separate safety
potential field models, which evaluate driving risks from both subjective and objective perspectives. The C-SPF
subjective field (S-field) is designed to quantify proximity risks beyond drivers’ proximity tolerance, while the objective
field (O-field) assesses imminent collision probability based on vehicles’ relative motions.

A key advantage of the C-SPF compared to existing models is that it does not rely on rare extreme event data for
calibration. Instead, it uses vehicle spacing data to calibrate drivers’ two-dimensional spatial proximity tolerance for the
S-field, which is abundant in public naturalistic driving datasets and reflects drivers’ proximity-based risk perception.
On the other hand, the O-field in C-SPF uses straightforward motion functions to derive physical vehicle collision
probabilities instead of using a psychological model requiring complex calibration, allowing for a direct evaluation of
collision risks.

The proposed C-SPF combines the S-field and O-field and provides a comprehensive framework for assessing
driving safety by addressing both subjective and objective risk dimensions. Such a composite structure for risk
assessment enables the integration of both the potential physical collision and the human perception factors. This
integration improves the model’s relevance and application in real-world scenarios, where driver actions and collision
risks are closely interconnected.

The proposed C-SPF is calibrated and validated using the Highway Drone Dataset of Naturalistic Trajectories
(highD) to ensure real-world applicability. Extensive analysis is performed to ensure that the C-SPF effectively
captures risky scenarios and the corresponding driver behaviors. Case studies featuring multiple scenarios involving
both longitudinal and lateral vehicle interactions are presented to verify the model’s generalizability across various
situations. The C-SPF is compared against existing safety measures, including a literature-based risk field (Wang,
Wu, Zheng, Ni and Li (2016b)). The results demonstrate that the C-SPF framework and its associated risk indicators
effectively capture both longitudinal and lateral risks that triggered drivers’ safety maneuvers. Additionally, the model
outperforms existing safety measures in interpreting driving behaviors across various scenarios, such as car-following,
lane-changing, and lateral adjustments in the lane.
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The remainder of the paper is organized as follows. Section 2 reviewed related literature. Section 3 presents the
methodology to structure the C-SPF. Section 4 describes the experiment settings and analyzes the results. Section 5
presents the discussion. Section 6 presents the conclusion.

2. Literature review
2.1. Driving risk assessment

Driving risk assessments utilize metrics or algorithms to identify potential hazards and evaluate their severity or
proximity. These metrics or algorithms may incorporate objective factors, subjective factors, or both.

One commonly used objective metric is the Surrogate Safety Measure (SSM). These measures evaluate collision
risk by analyzing traffic conflicts—situations that may not result in crashes but could lead to actual collisions if the
involved road users do not alter their movements (Arun, Haque, Bhaskar, Washington and Sayed (2021)). Some SSMs
also assess additional risks, such as lane departure (Mammar et al. (2004)). These metrics have been widely used to
provide real-time risk assessment inputs to various technologies to improve vehicle and traffic safety, such as adaptive
signal control, collision-warning, advanced driving assistance system (ADAS), and autonomous driving.

However, the literature identifies several limitations of existing SSMs for risk assessment. First, the correlation
between SSMs and collisions is highly context-dependent. However, the correlation of these measures to actual accident
statistics can vary widely across different facilities or even among segments of the same highway. This variability
arises from the heterogeneity of crash characteristics, including types and occurrence patterns, across different types
of facilities and regions. Existing safety assessment models often rely on thresholds that are either arbitrarily determined
or calibrated using location-specific accident data, which undermines their generalizability across different facilities
or road segments (Vasudevan, O’Hara, Townsend, Asare, Muhammad, Ozbay, Yang, Gao, Kurkcu and Zuo (2022)).
Second, conventional SSMs are designed for specific types of conflicts, and risk assessment models based on a single
metric often lack applicability across different use cases. For instance, DRAC is specifically tailored for car-following
scenarios, where lateral movements are ignored. Conversely, PET is suited for lateral interactions, such as turning and
merging, making it more applicable to intersections and ramp areas (Wang et al. (2021)).

Some models also assess driving risk based on subjective factors, evaluating drivers’ perception of risks through
behaviors, physiological states, or biometric data. Phase (2006), Fazeen, Gozick, Dantu, Bhukhiya and González
(2012), and Stipancic, Miranda-Moreno and Saunier (2018) evaluated driving safety through vehicles’ acceleration
and deceleration behaviors, including instances of fast acceleration and hard braking. Shangguan, Fu and Liu (2020)
used drivers’ braking reaction time to identify risky trajectories and quantify the impact of foggy weather on highway
driving risk. Petit et al. (2021) used the maximum steering angle to assess driving risk levels and utilized a learning-
based method to study the influence of various vehicle and driver factors on safety.

However, these subjective risk assessment methods also have drawbacks. First, driver behavior data, such
as maximum deceleration rate, braking time, or steering angle, is typically used to evaluate driving risks over
complete trajectories. Since these metrics are consequences of risk perception, they cannot proactively estimate risks,
compromising their feasibility for real-time applications. Second, similar to the objective measures, most subjective
measures derived from driver behavior are context-dependent. They rely on pre-determined thresholds to identify risk
levels, but the optimal values of these thresholds can vary depending on driving styles and environments.
2.2. Safety potential field

The safety potential field method quantifies driving risks originated from artificial potential field theory, which
is a modeling approach to quantify the risks associated with spatial proximity between objects. This theory was first
applied to reactive navigation and path planning for robots by Khatib (1986). It utilized the repulsive force generated
by obstacles within a virtually generated potential field to model collision avoidance behaviors. In the last decade,
the potential field theory has been applied to a wide range of applications in various topics of transportation research
not only in road safety and vehicle dynamics modeling but also in other fields such as pedestrian modeling Helbing
and Molnar (1995) Chraibi, Wagoum, Schadschneider and Seyfried (2011) Wang, Wang et al. (2016a) Yu, Li, Song,
Zhang, Li, Xu and Jiang (2022) Tan, Wang and Zhong (2023) and maritime navigation Gan, Yan, Zhang, Liu, Zheng,
Zhou and Shu (2022) Shi, Zhang and Peng (2007).

In the realm of driving risk assessment, various safety potential field models have been proposed, employing distinct
field functions grounded in physical principles to capture the spatial distribution of driving risk around vehicles. The
existing safety potential field models can be classified as using either a subjective or objective approach, depending
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on their modeling approach. Most safety potential field models adopt a subjective psychological field with a physical
foundation to represent drivers’ risk perception. These models quantify how physical factors, such as proximity to
collisions or distance to obstacles, influence subjectively perceived driving risks. For instance, Wang et al. (2016b)
employed the principles of the Doppler effect and potential energy fields to define risk evolution based on changes
in vehicle kinematics and various driver and road factors. Similarly, Li, Gan, Ji, Qu and Ran (2020a)incorporated
acceleration to refine the field’s shape and modeled drivers’ proximity risk perception as a repulsive force. Additionally,
Arun, Haque, Washington and Mannering (2023) introduced a psychological risk force combining the risk of proximity
to an impending collision and the expected severity of a collision.

On the other hand, Mullakkal-Babu, Wang, He, van Arem and Happee (2020) proposed an objective approach using
a collision probabilistic field considering solely physical kinematic factors, such as vehicles’ feasible deceleration
range, to assess vehicles’ driving risk by objectively predicting their collision probability. Wu, Zheng, Xu, Wu, Li,
Xu and Nie (2019) proposed a driving safety field to estimate collision risk between vehicles and pedestrians at
unsignalized road sections by incorporating the randomness in pedestrian motion predictions. Song, Zhao, Zhu, Han
and Jia (2024) proposed a driving risk prediction model that integrates a cognitive field representing the human driver’s
perspective with an objective anisotropic risk field to quantify the risk posed by nearby risk entities to achieve human-
like risk assessment.

Existing studies employ various methods to calibrate their safety potential field models. Wang et al. (2016b)
discussed the use of traffic accident statistics for model calibration. Arun et al. (2023) utilized crash characteristic
data from intersections within a city to fit their model. Li et al. (2020a) and Tan, Lu and Liu (2021) calibrated their
car-following models using deceleration behaviors derived from trajectory datasets. Additionally, Song et al. (2024)
employed a learning-based approach to fit their model using risk-level data manually labeled for lane-changing videos.

Existing safety potential field models have been applied to various risk assessment tasks, leveraging their unique
features and strengths. Wang et al. (2016b) and Mullakkal-Babu et al. (2020) investigated risks related to car-following
and cut-in maneuvers using test vehicles and simulations. Li, Gan, Yi, Qu and Ran (2020b) and Wang, Chen, Zhang,
Wong, Zhang and Zhou (2024) used safety potential fields to assess collision risks associated with lane blockages and
work zones through simulations. Chen and Wen (2022) and Zhang, Wei, Chen and Pei (2024) employed field-based
approaches to assess rear-end collision risks in tunnel areas, while Song, Sun and Tao (2022) evaluated the risk of
secondary rear-end collisions. Song et al. (2024) focused on predicting subjectively labeled risk levels associated with
lane-changing maneuvers.

3. Composite Safety Potential Field
3.1. Subjective field

The first component of C-SPF, the Subjective Field (S-field), quantifies drivers’ perceived risk associated with
spatial proximity to nearby risk entities. The S-field assumes that each highway vehicle proactively maintains a safety
space around itself such that any other vehicle or object perceived to intrude upon this space poses a proximity risk
and will compel the driver to adjust the spacing. The closer proximity to the intruding risk entity results in stronger
risk.

To model the naturalistic drivers’ behavior to maintain such a proactive safety space and estimate the risk caused
by the intrusion, we adopted the concept of probabilistic spacing proposed by Jiao, Calvert, Van Cranenburgh and
van Lint (2023). This approach defines proximity resistance, equivalent to the proximity risk in the proposed S-field,
as one minus the proximity tolerance, where proximity tolerance is defined as the likelihood of the presence of the
observed surrounding vehicles. The S-field risk intensifies with diminishing relative spacing, with a higher risk value
reflecting greater pressure or discomfort perceived by the drivers, encouraging the driver to adjust the relative distance.
While Jiao et al. (2023) focuses solely on inter-vehicle spacings, the proposed S-field extends its analysis to include
risk entities such as vehicles, lane markers, and road boundaries.
3.1.1. Vehicle proximity risk

The generalized Gaussian distribution (GGD) was identified by Jiao et al. (2023) as an effective method for inferring
proximity resistance based on drivers’ probabilistic spacing. The original one-dimensional GGD probability density
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Figure 1: One-dimensional proximity risk distribution based on GGD

function writes (Novey, Adali and Roy (2009)),
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where the parameters 𝜇, 𝛾 , and 𝛽 are the mean, scale factor, and shape factor of GGD. Γ(1∕𝛽) represents a Gamma
distribution with shape parameter 1∕𝛽.

To estimate the proximity risk perceived by drivers, equation (1) is scaled between 0 and 1. The one-dimensional
S-field risk perceived by the ego vehicle 𝑗 due to its spacing with a nearby vehicle 𝑖 is defined as:
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where 𝑟1𝐷𝑠,𝑖𝑗 represents the one-dimensional proximity risk perceived by the ego vehicle 𝑗 due to the spacing with another
vehicle 𝑖 nearby. Δ𝑥𝑖𝑗 represents the longitudinal distance between the two vehicles. Figure 1 illustrates the shapes of
the one-dimensional proximity risk represented by GGD functions with different parameters. The red dashed line in
Figure 1 indicates the risk value at a spacing of Δ𝑥𝑖𝑗 = 𝛾 . The scale factor 𝛾 > 0 defines the critical safety distance
beyond which drivers begin to perceive escalating risks, while 𝛽 ≥ 2 governs the rate at which the proximity risk
escalates. The two-dimensional S-field function is based on the extension of Eq. (2),
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where 𝑟𝑣𝑠,𝑖𝑗 denotes the two-dimensional proximity risk perceived by the ego vehicle 𝑗 due to perceiving the presence
of nearby vehicle 𝑖. Δ𝑥𝑖𝑗 represents the longitudinal relative distance between the two vehicles along the direction
of motion of the ego vehicle 𝑗, while Δ𝑦𝑖𝑗 represents the lateral relative distance between the two vehicles measured
perpendicular to the ego vehicle’s direction of motion. Both Δ𝑥𝑖𝑗 and Δ𝑦𝑖𝑗 are measured around between the closest
points between the two vehicles. 𝛾𝑥 > 0 and 𝛾𝑦 > 0 are scale factors along the longitudinal and lateral directions,
respectively, while 𝛽𝑥 ≥ 2 and 𝛽𝑦 ≥ 2 are the corresponding shape factors.
3.1.2. Lane marker and boundary proximity risk

The ego vehicle 𝑗’s S-field risk relative to the near lane marker 𝑎 is defined as a function of their lateral distance
in between:

𝑟𝑙𝑠,𝑎𝑗 = exp
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where 𝛾𝑙 > 0 and 𝛽𝑙 ≥ 2 denote the scale factor and shape factor, respectively. Δ𝑦𝑎𝑗 denotes the lateral distance between
lane marker 𝑎 and the center of the ego vehicle 𝑗.

Similarly, the ego vehicle 𝑗’s S-field risk relative to the near road boundary 𝑘 is defined as follows:
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where 𝛾𝑏 > 0 and 𝛽𝑏 ≥ 2 denote the scale factor and shape factor, respectively. Δ𝑦𝑘𝑗 denotes the lateral distance
between road boundary 𝑘 and the center of the ego vehicle 𝑗.
3.1.3. Parameter inference

The parameters of the S-field in Eqs. (3), (4), and (5) should be derived from naturalistic driving data to achieve
a human-like estimation of drivers’ safety space across different vehicle velocities. Similar to the parameter inference
method described in Jiao et al. (2023), the S-field parameters were derived by estimating the density distribution
of the accumulated presence of surrounding risk entities. This approach assumes that more frequent proximity in the
distribution under similar conditions of vehicle kinematics is generally more tolerable to drivers and, therefore, poses a
lower S-field risk. This approach assumes that more frequent proximities in the distribution, under the same conditions,
are generally more tolerable to drivers and thus pose a lower S-field risk. Conversely, less frequent proximities in the
distribution correspond to higher S-field risks. Therefore, the S-field, as defined in Eqs. (3), (4), and (5), should be
calibrated to effectively differentiate between frequent and infrequent spacings observed across a large population of
drivers.

The likelihood of the observed spacing, based on the definition of proximity risk, can be expressed as one minus
the corresponding S-field risk value. By aggregating spacing data over extended time frames and sample vehicles, the
joint likelihood of the accumulated spacing samples is defined as:
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where 𝑁𝑣
𝑗 , 𝑁 𝑙

𝑗 , and 𝑁𝑏
𝑗 represent the number of nearby vehicles perceived, lane markers, and road boundaries,

respectively. One minus the S-field risk, such as 1 − 𝑟𝑣𝑠,𝑖𝑗 , 1 − 𝑟𝑙𝑠,𝑎𝑗 , and 1 − 𝑟𝑏𝑠,𝑘𝑗 , represents the likelihood of the
current spacing relative to the corresponding risk entity. 𝑛 denotes the total number of accumulated vehicle frames.

The joint log-likelihood can be written as,
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According to Jiao et al. (2023), the optimal 𝛽 should maximize the joint likelihood 𝐿 to capture the sparsity of
infrequent proximity. Meanwhile, the optimal 𝛾 should identify typical drivers’ critical safety space, representing the
distance with which other vehicles and objects rarely intrude. Specifically, 𝛾 should identify the position where the
likelihood escalated transitions from a gradual to a rapid increase as the distance diminishes, corresponding to the
point where the second-order derivative of likelihood 𝐿 with respect to 𝛾 is minimized.

Thus, inferring S-field parameters involves iteratively solving the following problems until all parameters converge
or the maximum number of iterations is reached:

𝛽 ← argmax
𝛽

ln(𝐿) s.t. 𝛽 ≥ 2 for 𝛽 = 𝛽𝑥, 𝛽𝑦, 𝛽𝑙, 𝛽𝑏 (8)

and
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𝜕 ln(𝐿)
𝜕𝛾

)

s.t. 𝛾 > 0 for 𝛾 = 𝛾𝑥, 𝛾𝑦, 𝛾𝑙, 𝛾𝑏 (9)
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3.1.4. Influencing factors of field shape
The absolute velocity is identified as the key factor shaping the proposed S-field. The influence of vehicle velocity

on drivers’ subjective safety space aligns with established research demonstrating its impact on both longitudinal
and lateral spacing in highway environments. For instance, vehicles traveling at higher speeds tend to maintain
greater space headways with preceding vehicles during car-following, even in the absence of speed differences
(Lazar, Rhoulami and Rahmani (2016)). This behavior reflects the longitudinal aspect of the safety space drivers
proactively maintain. Additionally, studies have shown that absolute velocity correlates with inter-vehicle lateral
distance (Delpiano, Herrera M and Coeymans A (2015)) and vehicles’ lateral positioning within the lane (Dai, Pan,
Xiong, Ding, Zhang and Xu (2022)), illustrating the lateral dimension of this subjective safety space.

Other factors, such as speed difference, vehicle class, road and environmental conditions (e.g., lighting, road
curvature, and pavement quality), and driver characteristics (e.g., driving skills and age), are not addressed in the
S-field. First, although speed difference is intuitively related to drivers’ risk perception, it is already incorporated into
the second component of C-SPF, the O-field. Therefore, it is not selected for the S-field to avoid redundancy. Second,
incorporating multiple risk factors complicates the calibration process. The methodology in Section 3.1.3 estimates 𝛾
and 𝛽 directly, rather than their relationship with risk factors. Establishing this relationship requires discretizing the
risk factors and segmenting the dataset into smaller divisions based on the factor combinations. Calibration is then
performed separately for each division. However, increasing the dimensionality of factors significantly reduces the
data available for each division, which can substantially compromise the reliability of the calibration results.
3.1.5. Aggregated subjective risk

The aggregated S-field risk experienced by the ego vehicle 𝑗 in a highway environment surrounded by multiple
vehicles is defined as one minus the joint likelihood of the ego vehicle’s spacing relative to all surrounding risk entities,
such that:
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where 𝜅𝑙 and 𝜅𝑏 are coefficients between 0 and 1 to balance the relative risk contribution of lane markers and boundaries
compared to vehicles, since crossing the lane marker usually does not cause a collision, nor does crossing a road
boundary if it is not a physical barrier. 𝑟𝑠,𝑗 rises as the number of vehicles nearby increases, or as the risk associated
with any risk entity escalates.
3.2. Objective field

The second component of C-SPF, the objective field (O-field), measured the risk of collision by estimating the
probability that two risk entities would collide during the process of relative movements.
3.2.1. Generalized collision risk

Intuitively, two vehicles suffer elevated collision probability in a two-dimensional space when: (1) there is a
potential collision point in their predicted future trajectory, (2) there is insufficient time for drivers’ maneuver to avoid
the collision. Based on this rationale, the O-field is defined as follows,

𝑟𝑜,𝑖𝑗 = 𝑃𝑖𝑗 ⋅ 𝑇𝑖𝑗 (11)
where 𝑟𝑜,𝑖𝑗 denotes the objective collision risk estimated by O-field between vehicle 𝑖 and 𝑗, which will be referred to
as O-field risk in the remainder of the paper. 𝑃 is a spatial proximity factor that predicts whether the nearest future
proximity between two vehicles could potentially lead to a collision. 𝑇 is a temporal proximity factor that quantifies the
time proximity to that potential collision. For simplicity and better generalization, the O-field measured the collision
risk at discrete times and estimated 𝑃 and 𝑇 from vehicles’ current two-dimensional distances and relative kinematics.

To estimate 𝑃 at a specific time point, the O-field predicts the positions where the relative distance between two
risk vehicles will be minimized in the near future and determines whether this minimal future distance would result in
a collision. Intuitively, a collision will be highly likely if that minimal future distance between the two vehicles falls
below a predefined threshold. Therefore, the definition of 𝑃 is given as follow,

𝑃𝑖𝑗 = exp
⎡

⎢

⎢

⎣

−

(

𝑑𝑚,𝑖𝑗
𝑑∗

)𝛽𝑝
⎤

⎥

⎥

⎦

(12)
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where 𝑑𝑚,𝑖𝑗 denotes the predicted minimum future distance between risk vehicles 𝑖 and 𝑗 from the risk estimation point
into the near future during the process they approach each other. 𝑑∗ is a predefined distance threshold to check the
occurrence of collision. 𝛽𝑝 is a shape factor.

Let 𝑑𝑖𝑗(𝑡) represent the predicted future distance between two vehicles at time 𝑡, measured from the risk estimation
point where 𝑡 = 0. If the two vehicles exhibit a tendency to approach each other at the risk estimation point, there will
be time derivative ̇̂𝑑𝑖𝑗 < 0 at 𝑡 = 0. Then the predicted future minimum distance 𝑑𝑚,𝑖𝑗 can be defined as,

𝑑𝑚,𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

0 if 𝑑𝑖𝑗(0) = 0
𝑑𝑖𝑗(𝑡𝑚,𝑖𝑗) if 𝑑𝑖𝑗(0) > 0 and ̇̂𝑑𝑖𝑗(0) < 0
∞ else

(13)

where 𝑡𝑚,𝑖𝑗 is defined as the time frame when the distance between the vehicle stops decreasing, which can be expressed
as follows,

𝑡𝑚,𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

0 if 𝑑𝑖𝑗(0) = 0
max 𝑡 s.t. ̇̂𝑑𝑖𝑗(𝑡′) < 0, ∀ 0 ≤ 𝑡′ < 𝑡. if 𝑑𝑖𝑗(0) > 0 and ̇̂𝑑𝑖𝑗(0) < 0
∞ otherwise

(14)

Similar to how 𝑃𝑖𝑗 is estimated in Eq. (12), we can define the time proximity 𝑇𝑖𝑗 to the potential collision point as
a function of 𝑡𝑚,𝑖𝑗 , which writes,

𝑇𝑖𝑗 = exp
⎡

⎢

⎢

⎣

−

(

𝑡𝑚,𝑖𝑗
𝑡∗

)𝛽𝑡
⎤

⎥

⎥

⎦

(15)

where 𝑡∗ is a scaling factor and 𝛽𝑡 is a shape factor. The value of 𝑇𝑖𝑗 ranges from 0 to 1, with a lower 𝑡𝑚,𝑖𝑗 producing
a higher time intensity to the potential collision point and, thus, a greater collision risk. 𝑇𝑖𝑗 equals 1 if a collision has
already happened, indicated by 𝑑𝑖𝑗(0) = 0, and equals 0 if two vehicles are moving away from each other since the risk
estimation point.
3.2.2. Simplified objective risk

For simplicity, vehicles are assumed to maintain constant velocities and directions of movement in a short period.
Under this assumption, the relationship between the predicted future distance 𝑑𝑖𝑗(𝑡) between two risk vehicles and their
current two-dimensional distances and instantaneous speed differences can be expressed as,

𝑑𝑖𝑗(𝑡) =
|

|

|

𝑫𝑖𝑗 + 𝑽 𝑖𝑗 ⋅ 𝑡
|

|

|

, 𝑡 ≥ 0 (16)

where 𝑫𝑖𝑗 is the distance vector between vehicle 𝑖 and 𝑗 at the point of risk estimation, 𝑫𝑖𝑗 =
[

𝑥𝑖 − 𝑥𝑗
𝑦𝑖 − 𝑦𝑗

]

=
[

Δ𝑥𝑖𝑗
Δ𝑦𝑖𝑗

]

. 𝑥𝑖
and 𝑦𝑖 are the x and y coordinate of vehicle 𝑖 on the road. 𝑽 𝑖𝑗 is the speed difference vector between vehicle 𝑖 and 𝑗 at
the point of risk estimation, 𝑽 𝑖𝑗 =

[

𝑣𝑥,𝑖 − 𝑣𝑥,𝑗
𝑣𝑦,𝑖 − 𝑣𝑦,𝑗

]

=
[

Δ𝑣𝑥,𝑖𝑗
Δ𝑣𝑦,𝑖𝑗

]

. 𝑣𝑥,𝑖 and 𝑣𝑦,𝑖 are the speed factor of vehicle 𝑖 along x and
y axis, respectively.

Substitute Eq. (16) into Eq. (14) and solve under the given conditions. The computation of 𝑡𝑚,𝑖𝑗 is then adjusted as
follows,

𝑡𝑚,𝑖𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if ||
|

𝑫𝑖𝑗
|

|

|

= 0

−
𝑫𝑇

𝑖𝑗𝑽 𝑖𝑗

𝑽 𝑇
𝑖𝑗𝑽 𝑖𝑗

= −Δ𝑥𝑖𝑗Δ𝑣𝑥,𝑖𝑗+Δ𝑦𝑖𝑗Δ𝑣𝑦,𝑖𝑗
Δ𝑣2𝑥,𝑖𝑗+Δ𝑣

2
𝑦,𝑖𝑗

if 𝑫𝑇
𝑖𝑗𝑽 𝑖𝑗 < 0 and |

|

|

𝑫𝑖𝑗
|

|

|

> 0

∞ otherwise
(17)
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Combining Eq. (17) and Eq. (13) will give the adjusted expression of 𝑑𝑚,𝑖𝑗 under the assumption of constant
velocities:

𝑑𝑚,𝑖𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if ||
|

𝑫𝑖𝑗
|

|

|

= 0
|

|

|

𝑫𝑇
𝑖𝑗𝑨𝑽 𝑖𝑗

|

|

|

|𝑽 𝑖𝑗|
= |

|

|

𝑫𝑇
𝑖𝑗𝑨𝑉𝑖𝑗

|

|

|

=

√

(

Δ𝑦𝑖𝑗Δ𝑣𝑥,𝑖𝑗−Δ𝑥𝑖𝑗Δ𝑣𝑦,𝑖𝑗
)2

Δ𝑣2𝑥,𝑖𝑗+Δ𝑣
2
𝑦,𝑖𝑗

if 𝑫𝑇
𝑖𝑗𝑽 𝑖𝑗 < 0 and |

|

|

𝑫𝑖𝑗
|

|

|

> 0

∞ otherwise
(18)

where 𝑨 is a transformation matrix which writes, 𝐴 =
[

0 1
−1 0

]

. �̂� 𝑖𝑗 denotes the speed difference 𝑽 𝑖𝑗 vector
normalized by its length, such that �̂� 𝑖𝑗 = 𝑽 𝑖𝑗∕|𝑽 𝑖𝑗|. According to Eq.(18), the value of 𝑑𝑚,𝑖𝑗 is irrelevant to the
magnitude of the vehicles’ speed difference under the assumption of constant velocities. Instead, it depends solely on
their current distances and the direction of their relative speed.

Therefore, based on equation (11), the O-field that quantifies vehicles’ collision risk at any discrete time point,
assuming constant speed differences, can be expressed as:

𝑟𝑜,𝑖𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if ||
|

𝑫𝑖𝑗
|

|

|

= 0

exp
[

−
(

1
𝑑∗ ⋅ ||

|

𝑫𝑇
𝑖𝑗𝑨𝑉𝑖𝑗

|

|

|

)𝛽𝑝
]

⋅ exp

[

−
(

1
𝑡∗ ⋅ −

𝑫𝑇
𝑖𝑗𝑽 𝑖𝑗

𝑽 𝑇
𝑖𝑗𝑽 𝑖𝑗

)𝛽𝑡
]

if 𝑫𝑇
𝑖𝑗𝑽 𝑖𝑗 < 0 and |

|

|

𝑫𝑖𝑗
|

|

|

> 0

0 otherwise
(19)

3.2.3. Aggregated objective risk
In a scenario where the ego vehicle 𝑗 is surrounded by other multiple vehicles 𝑖 ∈ 𝑁𝑖, the aggregated O-field risk

posed on vehicle 𝑗 is defined as the probability of a collision occurring with any of the surrounding vehicles:
𝑟𝑜,𝑗 = 1 −

∑

𝑖∈𝑁𝑗

(1 − 𝑟𝑜,𝑖𝑗) (20)

The aggregated O-field risk vehicle 𝑗 experiences will rise as the number of nearby vehicles increases, or as the
collision risk with any of the surrounding vehicles escalates.

4. Experiments
4.1. Data description

The Highway Drone Dataset Naturalistic Trajectories (highD) (Krajewski, Bock, Kloeker and Eckstein (2018))
is used for the calibration and validation of C-SPF. The dataset is recorded on German highways using drones
at six different locations, covering over 110,500 vehicles and each segment measuring 420 meters. The dataset
includes detailed information for each vehicle extracted by computer vision algorithms, including position, velocity,
acceleration, dimension, and vehicle sight distance. The data also include positions of lane markers and road
boundaries. The data was collected between 8 AM and 5 PM during windless and sunny days allowing the influence
of weather conditions on driving behaviors to be disregarded. The complete dataset of highD is used for parameter
inference and analysis.

Figure 2(a) illustrates the distribution of vehicle velocity per vehicle frame in the highD dataset. The vehicle
velocity ranges from 0 to 50 meters per second (m/s), with the majority of the frames concentrating between 20
and 40 m/s. The dataset also includes extensive trajectory data captured during congestion, with vehicle velocity
nearing zero. Figure 2(b) illustrates the distribution of clockwise angles of vehicles’ moving direction, calculated by
𝜃 = 180°∕𝜋 × arcsin

(

𝑣𝑦∕
√

𝑣2𝑥 + 𝑣2𝑦
)

, where 𝑣𝑥 and 𝑣𝑦 denote the longitudinal and lateral speed factor of vehicle,
respectively. Most vehicle angles are between -3° and 3°.
4.2. Model calibration
4.2.1. S-field parameters

The S-field parameters are calibrated using the highD dataset. The entire dataset is segmented based on the closest
integer number of the instantaneous velocity. For example, the velocity division of 20 m∕s includes all trajectories
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(a) HighD vehicle-frame velocity distribution (m/s) (b) HighD vehicle-frame steering angle distribution (°)
Figure 2: Distribution of velocity and steering angle of highD vehicles

with velocities ranging from 19.5 to 20.5 m∕s. The parameter inference method described in Section 3.1.3 is applied
to each individual division. To generalize across all vehicles, bootstrapping is used to create subsamples of different
vehicles from each velocity-specific division (Efron and Tibshirani (1994)). In each velocity division, subsampling is
repeated 20 times with 85% of the vehicles in the division randomly selected with replacement for each iteration. The
final parameters for each division are calculated as the means across all 20 iterations.

Figure 3 illustrates the parameter inference results. The data points represent the mean estimated values from 20
iterations of bootstrapping for each velocity division, where the data points represent mean estimated values from the
20 bootstrapping iterations and the shaded areas around the data points depict the standard deviation of the parameters
derived from the bootstrapping process. The bar plots show the number of vehicles in each velocity division. However,
the calibration method did not succeed for trajectory data points with velocities below 3 m∕s or above 42 m∕s due
to insufficient data for calibration. Therefore, it is necessary to establish a continuous relationship between the S-field
parameters and velocity using the calibrated parameters from regions where calibration is successful. The parameters
for velocities outside these regions are then predicted based on the fitted relationship.

According to Figure 3, 𝛾𝑥 increases with velocity, reflecting the tendency of drivers to maintain greater spacing
when traveling at higher speeds. The rate of increase in 𝛾𝑥 with velocity is not always linear across different velocity
ranges.

To establish a continuous relationship between 𝛾𝑥 and vehicle velocity, the following function is used for fitting the
estimated parameters:

𝛾𝑥 = 5.1053 × 10−4 × 𝑣3𝑗 − 3.7051 × 10−2 × 𝑣2𝑗 + 1.0621 × 𝑣𝑗 + 1.2925 (21)
For 𝛽𝑥, the estimated mean values decrease with increasing velocity at a non-linear rate. This trend is opposite to

𝛾𝑥. These findings suggest that while vehicles maintain a longer safety distance to the preceding vehicle at a higher
velocity, the rate at which the proximity escalates with diminishing distance becomes lower, meaning they are more
tolerant to vehicles intruding the safety space at Δ𝑥 = 𝛾𝑋 . The following function is used to establish a continuous
relationship between 𝛽𝑥 and vehicle velocity:

𝛽𝑥 = 2.2214 × 10−5 × 𝑣3𝑗 − 1.4834 × 10−3 × 𝑣2𝑗 + 9.6673 × 10−3 × 𝑣𝑗 + 3.2589 (22)
In the lateral dimension, the fitted 𝛾𝑦 and 𝛽𝑦 show minimal variation with increasing velocity. Their mean values

across all velocities, 1.4310 for 𝛾𝑦 and 4.9956 for 𝛽𝑦, are chosen as the final estimated parameters. The value of 𝛽𝑦 is
significantly higher than that of 𝛽𝑥, showing that drivers are more sensitive to the S-field risk as the spacing decreases
per meter in the lateral dimension than in the longitudinal dimension. This can be explained by less interaction space
in the lateral dimension than in the longitudinal dimension.

Figure 4 illustrates the S-field shapes corresponding to different velocities estimated upon highD vehicle data. The
red contours around the red ego vehicle outline the estimated safety space it maintains, corresponding to the position
where the S-field risk equals a threshold of 𝑒−1. This threshold indicates a spatial proximity beyond which drivers’
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Figure 3: S-field vehicle proximity risk parameter inference results with bootstrapping sampling. The filling colors indicate
the standard deviations obtained from bootstrapping.

perceived proximity risk escalates significantly. The black dots overlaid in Figure 4 represent the distribution of relative
positions of surrounding vehicles, with each dot indicating the closest point on a surrounding vehicle relative to the
ego vehicle.

The estimated values for 𝛾𝑙 and 𝛾𝑏 are 1.18 and 1.64, respectively. This indicates that vehicles tend to maintain a
greater lateral distance from lane markers compared to road boundaries. Additionally, the estimated values for 𝛽𝑙 and
𝛽𝑏 are 2.46 and 5.17, suggesting that vehicles are more sensitive to S-field risk when near road boundaries than when
they are near lane markers.
4.2.2. O-field parameters

We choose the following set of parameters for the O-field: 𝛽𝑑 = 10, 𝛽𝑡 = 2, and 𝛾𝑡 = 7.5. The relatively large 𝛽𝑑ensures the sensitivity of Eq. (12) to spatial proximity that potentially leads to collisions. The selection of 𝛾𝑡 corresponds
to the 5th-percentile value of positive TTC values in the dataset in ascending order, which is around 7.5 seconds.

For 𝛾𝑑 , different values are assigned for different vehicle pairs to ensure proper detection of lateral collisions. We
set 𝛾𝑑 = 0.5 × (𝑤𝑖 + 𝑤𝑗), where 𝑤𝑖 and 𝑤𝑗 denote the widths of the two vehicles. Since the vehicle angles in highD
data are mostly below 3°, the most likely type of lateral collision is a side-swipe. The chosen method for calculating 𝛾𝑑could effectively capture potential side-swipe collisions while minimizing false alerts. In the longitudinal dimension,
𝛾𝑑 is also capable of capturing rear-end collisions.

Figure 5 visualizes the shape of the O-field using the specified parameters under different scenarios of inter-vehicle
motion. In all four scenarios depicted in Figure 5, the ego vehicle is shown in red, maintaining a constant velocity of
15 m/s along its current lane. The position, velocity, and direction of the influencing vehicle, shown in blue, vary
across scenarios to represent different relative motion conditions. The blue shaded areas indicate regions where the
O-field risk exceeds a threshold of 𝑒−1, consistent with the S-field threshold discussed earlier. When the ego vehicle is
positioned inside these shaded areas, it is exposed to an elevated collision risk.

Figure 5(a) and Figure 5(b) depict the variations in the propagation of the O-field risk in car-following scenarios
with different speed differences, with the latter extending further on the road, indicating a higher collision risk for the
ego vehicle. Figure 5(c) demonstrates the O-field’s ability to capture a potential side-swipe collision involving the ego
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(a) S-field at vehicle velocity 15 m∕s (b) S-field at vehicle velocity 25 m∕s (c) S-field at vehicle velocity 35 m∕s
Figure 4: Visualization of S-field with parameters calibrated with highD data

vehicle, validating the selected value of the parameter 𝛾𝑑 . Finally, Figure 5(d) illustrates a potential collision scenario
caused by a lane-changing vehicle, confirming that the selected parameters effectively capture lateral risks during lane
changes. Overall, these demonstrated cases confirm that the O-field with the selected parameters effectively captures
collision risks arising from both longitudinal and lateral inter-vehicle motions.
4.3. Driving behavior analysis

This subsection validates the relationship between the proposed C-SPF and driver behaviors by applying the C-SPF
to the highD dataset. The distributions of vehicle velocity and acceleration associated with risky scenarios identified
by the subjective or objective components of the C-SPF are presented. The analysis found the C-SPF could effectively
indicate drivers’ braking and lateral maneuvers.
4.3.1. Braking

In car-following scenarios, the following vehicle will apply the brakes upon perceiving a potential collision with
the leading vehicle. The intensity of braking generally depends on the proximity to the potential collision. In the highD
data, the braking behavior of following vehicles is observed to be associated with high O-field risk caused by the
leading vehicle. Figure 6 illustrates the distribution of the following vehicles’ acceleration rates within 1 second after
the leading vehicle posing an O-field risk exceeding certain thresholds, indicating a risk of rear-end collision. The
distribution indicates that vehicles are likely to decelerate more when the O-field risk posed by the leading vehicle
is high. Specifically, greater deceleration is associated with higher levels of O-field risk from the vehicle ahead. This
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(a) O-field at vehicle velocity 15 m∕s

(b) O-field at vehicle velocity 25 m∕s

(c) O-field at vehicle velocity 35 m∕s

(d) O-field at vehicle velocity 35 m∕s
Figure 5: Visualization of O-field with different inter-vehicle motions

demonstrates that the O-field in the proposed C-SPF effectively captures rear-end collision risks that trigger drivers’
braking behaviors.

Figure 6: Following vehicle acceleration distribution 1 second after leading vehicle O-field risk peaking over threshold
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Figure 7: Distribution of vehicle lateral acceleration within 1 second after the lateral O-field risk exceeds a threshold.
Lane-changing vehicles are isolated. Rightward acceleration is considered positive, while leftward acceleration is negative.

Figure 8: Distribution of vehicle lateral velocity within 1 second after the lateral S-field risk exceeds a threshold. Lane-
changing vehicles are isolated. Rightward velocity is considered positive, while leftward velocity is negative.

4.3.2. Lateral maneuver
C-SPF is capable of capturing risks that influence vehicles’ maneuvers in the lateral dimension. Excluding lane-

changing vehicles from the dataset, Figure 7 shows the distribution of vehicles’ lateral acceleration within 1 second
after vehicles in adjacent lanes generate a relatively high O-field risk, indicating an elevated collision risk from the
lateral. The comparison of vehicles’ lateral acceleration rates under the influences of left and right lateral O-field risks
shows that vehicles accelerate laterally in the direction opposite to the source of the risk. For example, when a vehicle
in the left adjacent lane produces a relatively high O-field risk, the influenced vehicle tends to accelerate toward the
right.

Figure 8 illustrates the distribution of vehicles’ lateral velocity within 1 second after being influenced by a relatively
high S-field risk from the adjacent lanes. Lane-changing vehicles are excluded. The figure demonstrates that the
distribution of lateral velocities skews towards the direction opposite to the source of the lateral proximity risk. This
indicates that vehicles tend to adjust their lateral position in the lane when perceiving an escalated proximity risk from
the lateral, causing driver discomfort and encouraging them to maneuver.
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(a) Car-following case 422.0 s

(b) Car-following case 428.0 s

(c) Car-following case 445.0 s
Figure 9: Visualization of car-following case. Vehicle No.1011 (red) is the ego vehicle which is the following vehicle in
car-following and vehicle No.1005 (blue) is the leading vehicle. The red contour represents the ego vehicle’s subjective
safety space; when the leading vehicle intrudes into this contour, the S-field risk exceeds 𝑒−1. The blue shaded areas indicate
regions where the leading vehicle poses an O-field risk greater than 𝑒−1.

4.4. Case studies
To validate the ability of the proposed C-SPF risk indicators to identify driving risks and interpret driver behaviors

across multiple scenarios, three cases randomly selected from the highD data are discussed, including: (1) a car-
following scenario where the following brake to avoid rear-end collisions with the leading vehicle in a stop-and-go
traffic (2) a lateral risky scenario where a car gave up lane-change due to the potential collision risk the preceding
vehicle in the target lane (3) a passing scenario where the vehicle adjust its lateral position in the lane to ensure
acceptable spacing with vehicle in the adjacent lane. The S-field risk associated with lane markers and boundaries is
not considered in case studies. Two baseline models are compared with the C-SPF risk indicators:

• Inverse time-to-collision (TTCi): This metric is calculated as the reciprocal of the inter-vehicle TTC determined
in two dimensions. The two-dimensional algorithm from (Hou, List and Guo (2015)) is used to compute TTC by
numerically simulating the movement of vehicles’ rectangular bounding boxes along their current trajectories
and speeds until a potential collision occurs. The time until this collision is then recorded as the TTC estimated
at the current time point.

• Relative driving safety index (RDSI) (Wang et al. (2016b)): a safety potential field-based risk index deriving
driving risks from a psychological field incorporating both subjective and objective risk factors to a risk
function. RDSI quantifies both the potential energy of the vehicle within the field and the rate of change of
this potential energy over time. The parameters specified in the original paper of Wang et al. (2016b) are used
for its implementation.

4.4.1. Car-following
Figure 9 illustrates a risky car-following scenario in the highD dataset. The ego vehicle No.1011, in red color,

followed by the leading vehicle No.1005, in blue color. This is a stop-and-go traffic scenario. The leading vehicle
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Figure 10: Comparison of the change of C-SPF and baseline risks experienced by the following vehicle in the car-following
case

stopped twice at around time 420.0 s and 440.0 s. The ego vehicle No.1011, which is the following vehicle of
car-following, applied brakes to avoid a rear-end collision. Figure 10 illustrates the change of C-SPF and baseline
risks experienced by the following vehicle in the car-following case. The ego vehicle, which was the follower in this
longitudinal interaction, was exposed to elevated O-field risk from the leading vehicle when approaching the leading
vehicle between 420.0 s and 425.0 s and between 440.0 s and 445.0 s. These high O-field risk values originate from
the longitudinal speed difference between the ego vehicle and the leading vheicle, indicating a high rear-end collision
risk with respect to the leading vehicle. In Figures 9 and 9, the regions where the O-field risk posed by the leading
vehicle exceeds a threshold of 𝑒−1 are highlighted with blue shading. A threshold of 𝑒−1 is chosen for visualizing the
O-field because, as shown in Figure 6, an O-field risk greater than 𝑒−1 is sufficient to trigger vehicle deceleration.

A small S-field risk increase was observed at 428.0 s, indicating a slight increase in proximity risk due to reduced
spacing with the leading vehicle following braking. A more pronounced S-field risk peak occurred around 445.0 s,
triggered by the diminishing distance to the leading vehicle. As shown in Figure 9c, the leading vehicle (depicted in
blue) intruded into the ego vehicle’s estimated safety space, resulting in an elevated S-field risk.

As for comparison with the baseline safety indicators, 10 demonstrates that the O-field mostly aligned with the
trend of TTCi but is more sensitive to imminent rear-end collisions. RDSI also captured the potential rear-end collision
risk between 420.0 s and 425.0 s and between 440.0 s and 445.0 s. However, this model exhibited more fluctuations
compared to TTCi and the O-field, which may reduce its reliability in consistently identifying high-risk situations.
4.4.2. Lane-change give-up

Figure 11 presents a case study where the ego vehicle No. 2368 abandoned a lane-change attempt due to the
potential collision risk posed by the preceding vehicle No. 2363 in the target lane. The risks experienced by the ego
vehicle, assessed using the proposed C-SPF and two baseline metrics, are depicted in Figure 12. From 1160.0 s to
1162.0 s, ego vehicle No. 2368 was preparing for a lane change. As shown in Figure 11(b), the ego vehicle began to
depart from its current lane at 1162.0 s but decided to abort the lane-change maneuver upon recognizing the potential
collision risk with vehicle No. 2363 in the target lane. Subsequently, the ego vehicle returned fully to its current lane
and continued driving in it.
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(a) Lane-change give-up case 1162.0 s

(b) Lane-change give-up case 1168.4 s
Figure 11: Visualization of a scenario where Vehicle No. 948 adjusted its lateral position in response to Vehicle No. 944 in
the adjacent right lane, which deviated from the center of its lane. The red contour represents the ego vehicle’s subjective
safety space; when the other vehicle intrudes into this contour, the S-field risk exceeds 𝑒−1. The blue shaded areas indicate
regions where the other vehicle poses an O-field risk greater than 𝑒−1.

Figure 12: Comparison of the change of C-SPF and baseline risks experienced by ego vehicle No. 2368 who gave up the
lane-change

The C-SPF O-field detected a potential collision risk with the preceding vehicle No. 2363 in the target lane at 1162.0
s, as shown in Figure 12. Additionally, the blue-shaded area in Figure 11(b) delineates the C-SPF O-field generated
by vehicle No. 2363 on the ego vehicle, with the shaded region indicating O-field risk values exceeding a threshold of
𝑒−1. This threshold is used for visualization because, as discussed in Section 4.3, a lateral O-field risk above 𝑒−1 can
trigger vehicles to perform lateral maneuvers to mitigate the risk. The O-field risk values between 1161.0 s and 1162.0
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(a) Lateral position adjustment case 478.0 s

(b) Lateral position adjustment case 481.6 s

(c) Lateral position adjustment case 484.6 s
Figure 13: Visualization of a scenario where Vehicle No. 948 adjusted its lateral position in response to Vehicle No. 944 in
the adjacent right lane, which deviated from the center of its lane. The red contour represents the ego vehicle’s subjective
safety space; when the other vehicle intrudes into this contour, the S-field risk exceeds 𝑒−1. The blue shaded areas indicate
regions where the other vehicle poses an O-field risk greater than 𝑒−1.

s align with the calculations of the two-dimensional TTCi, with both measures identifying the potential collision risk
if the ego vehicle continued on its current course.

In contrast, RDSI failed to capture this potential collision risk triggering the ego vehicle to abort the lane-
change maneuver. Instead, it flagged the moment at 1168.4 s when the two vehicles were side by side while passing.
Furthermore, a slightly elevated C-SPF S-field risk was observed due to the short relative spacing to the right preceding
vehicle No. 2368 before vehicle No. 2363 fully returned to its current lane. The comparison suggests the proposed
C-SPF is able to interpret drivers’ intention to abandon lane-changing due to potential lateral collision risks.
4.4.3. Lateral position adjustment

Figure 13 illustrates a scenario where the ego vehicle No. 948 passed another vehicle, No. 944, in the right adjacent
lane. Vehicle No. 944 deviated from its lane, reducing the lateral spacing with No. 948. This reduction triggered a peak
in the S-field risk around 481.6 s, as shown in Figure 14. In response to this risk, the ego vehicle No. 948 steered
toward the left side of its current lane while passing to mitigate the perceived proximity risk. Figure 13(b) shows the
situation before the lateral adjustment, where the lateral vehicle intruded into the safety space estimated for the ego
vehicle. Figure 13(c) depicts the moment after the lateral adjustment, where No. 948 had safely passed vehicle No. 944
without significant proximity risk from the lateral.

During the entire process of passing and adjusting the lateral position, neither the TTCi nor the O-field risk detected
any tendency for a collision. This suggests that the lateral maneuver of ego vehicle No. 948 was not prompted by a
potential collision risk. Instead, it was influenced by the driver’s perception of a proximity risk from vehicle No. 944
in the right lane, which was effectively captured by the S-field component in the proposed C-SPF, as shown in Figure
13(b). In contrast, as shown in Figure 14, RDSI failed to alert the lateral proximity risk before the maneuver and only
flagged a risk at the moment of passing, around 484.6 s. This highlights the superior interpretive power of the proposed
C-SPF in understanding drivers’ lateral maneuvers compared to this baseline safety potential field model.
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Figure 14: Comparison of the change of C-SPF and baseline risks experienced by ego vehicle No. 948 in the lateral
adjustment case

5. Discussion
The above analysis suggests that the proposed C-SPF effectively captures both collision and non-collision risks

across various scenarios. These case studies demonstrate the proposed C-SPF has better interpretive power to driver
behaviors in various scenarios, such as braking, lane-change abortion, and lateral position adjustment, compared to
existing models. This can be attributed to three advantages of C-SPF over these models.

First, with its composite structure, the C-SPF offers a comprehensive risk assessment metric by integrating drivers’
subjective risk perceptions regarding proximity and the objective risk of potential collisions. The proximity risk
perception and the collision risk are often independent as demonstrated in Section 4.4, where escalated lateral proximity
risks triggered drivers’ maneuvering in situations without a rising collision risk. The C-SPF using separate risk
components can better capture and generalize both risk dimensions compared to the baseline safety potential field
(Wang et al. (2016b)), which attempts to unify both risks within a single psychological field.

Second, compared to other safety potential field models, the subjective component of the C-SPF can be calibrated
using abundant spacing data derived from publicly available highway segment trajectory datasets. Additionally,
the objective component of the C-SPF relies on straightforward equations of vehicle motion to predict collisions,
eliminating the need for complex parameters and ensuring ease of implementation. Existing safety potential field
models, such as RDSI, are often insufficiently calibrated, relying on arbitrary physical functions and requiring local
accident statistics, which may not be available for every highway segment. Other models in the literature propose
calibrating safety potential fields based on drivers’ deceleration behaviors in car-following scenarios. However, this
approach provides only longitudinal information, limiting the model’s ability to explain lateral maneuvers. In contrast,
spacing data is two-dimensional, enabling the C-SPF to incorporate both longitudinal and lateral information, providing
a more comprehensive understanding of drivers’ risk perception.

The C-SPF offers significant potential for applications in pre-collision warning systems. A warning signal can be
triggered when the risk level surpasses a predefined threshold, alerting drivers to imminent dangers. Additionally,
the C-SPF can be seamlessly integrated into ADAS or autonomous driving systems to improve their understanding
of surrounding risks. By leveraging outputs from both the S-field and O-field, these systems can potentially be more
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sensitive to both longitudinal and lateral risks and achieve a more human-like risk assessment, enhancing their ability
to interact safely and intuitively with other vehicles in traffic.

6. Conclusion
In this study, we propose a new composite safety potential field (C-SPF) framework to comprehensively assess

highway driving risks and interpret driver behavior. The C-SPF integrates a Subjective Field (S-field) to estimate
drivers’ perceptions of spatial proximity risks to surrounding entities and an Objective Field (O-field) to predict
collision probabilities between vehicles. Compared to existing safety potential field models, the C-SPF avoids reliance
on the sparsely available data of accidents and is simpler to calibrate with abundant two-dimensional vehicle spacing
data in publicly available trajectory datasets. With its composite structure, the C-SPF can both mimic human drivers’
risk perception of spatial proximity and objectively assess the likelihood of potential road collisions.

The analysis and case studies demonstrate that the proposed C-SPF provides superior explainability for risky
situations and the corresponding driver maneuvers compared to existing risk indicators, such as TTC and RDSI. The
experiments driven by naturalistic data reveal that the C-SPF effectively identifies risks that trigger drivers to brake
or perform lateral maneuvers. Additionally, the case studies highlight the C-SPF’s ability to identify risk sources that
trigger drivers’ safety maneuvers, which existing indicators either fail to capture or detect with delay, particularly in
scenarios involving lateral interactions.

However, our current study has several limitations. First, only absolute speed is considered in shaping the S-field due
to data limitations and the need for simpler calibration. Other factors, such as road curvature, ramps, and vehicle class,
can also influence drivers’ perception of proximity risks. Future research should explore more effective calibration
methods to incorporate these factors into the model. Second, for simplicity, the calculation of O-field risk assumes
constant vehicle speeds, and the spatial component of the O-field does not account for vehicle length. While the current
implementation of the O-field is efficient, it could be improved by incorporating speed variations and more detailed
vehicle geometries for greater accuracy.

Future research will focus on several key areas. First, the model will be improved by incorporating road and vehicle
factors in the S-field, as well as accounting for speed variations and vehicle geometries to improve the accuracy of
the O-field. Second, the interconnection between the S-field and O-field will be explored to better understand the
nature of driving risk on highways. Third, further experiments will explore the potential of utilizing C-SPF to enhance
vehicle safety applications, such as collision warning systems and ADAS, by providing human-like risk assessment
and improving collision risk avoidance.
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